

令和5年4月実施

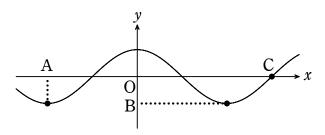
神奈川県高等学校教科研究会数学部会編数 学 学 カ テ ス ト

(無断転載を禁じます)

注意事項

- 1. 開始の合図があるまで、この問題冊子を開いてはいけません。
- 2. 解答用紙はこの冊子にはさんであります。
- 3. 計算はあいているところを使い、答えはすべて解答用紙の決められた 欄に書き入れなさい。
- 4. 問題には選択問題と、全員必答の共通問題があります。
- 5. 選択問題については、 $[\beta-1]$ から $[\beta-4]$ までの4群から、学校で指示された2群を解答しなさい。

解答上の注意事項


答えに根号が含まれるときは、根号の中は最も小さい自然数にしなさい。 答えが分数になるとき、約分できる場合は約分しなさい。

SII B共通問題 各4点 15題 計60点

次の各問いに答えよ。

- (1) $x^6 y^6$ を因数分解せよ。
- (2) a>0 のとき、 $a+\frac{25}{a}$ の最小値を求めよ。
- (3) 等式 $x^3-1=a(x-1)(x-2)(x-3)+b(x-1)(x-2)+c(x-1)+d$ が x についての恒等式となるように、定数 a 、 b 、 c 、 d の値を定めよ。
- (4) 2次方程式 $3x^2-2x+5=0$ の 2つの解を α , β とするとき, $\alpha^2+\beta^2$ の値を求めよ。
- (5) 整式 P(x) を x-1 で割った余りが 3, x+3 で割った余りが -5 である。 P(x) を (x-1)(x+3) で割った余りを求めよ。
- (6) 3次方程式 $x^3 3x^2 + 4x 4 = 0$ を解け。
- (7) 2点 A(1,4), B(7,-2)を結ぶ線分 ABを, 1:2に内分する点 Pの座標を求めよ。
- (8) 2点 A(2,4), B(4,8) を結ぶ線分 ABの垂直二等分線の方程式を求めよ。

- (9) 不等式 $x^2 + y^2 \le 4$ を満たす x, yに対して, 2x + y の最大値, 最小値を求めよ。
- (10) 下の図は $y = \cos x$ のグラフである。目盛りA~Cの値を求めよ。

- (11) $\pi < \theta < 2\pi$, $\cos \theta = \frac{\sqrt{21}}{5}$ のとき, $\frac{\sin \theta}{1 + \cos \theta} + \frac{\sin \theta}{1 \cos \theta}$ の値を求めよ。
- (12) $\sqrt[3]{2} \times \sqrt[6]{2} \div \sqrt{2}$ を計算せよ。
- (13) 不等式 $\log_3 x + \log_3(x-8) < 2$ を解け。
- (14) 関数 $y=x^3+3x^2-9x$ ($-1 \le x \le 2$) における最大値, 最小値を求めよ。
- (15) 定積分 $\int_{-2}^{2} (x+1)(x^2-3)dx$ を求めよ。

 $\overline{\text{SII}\beta}$ 選択問題 $[\beta-1]$ から $[\beta-4]$ の中から2群を解答すること。各群20点

 $[\beta-1]$ 三角関数] (1), (2)各5点, (3)(ア)3点 (イ) 7点

- $\sin\left(-\frac{1000}{3}\pi\right)$ の値を求めよ。
- (2) $0 \le \theta < 2\pi$ のとき、方程式 $2\cos^2\theta \sin\theta 1 = 0$ を解け。
- (3) 関数 $y=2\sin x-\cos 2x$ について、次の問いに答えよ。 (ア) $t=\sin x$ とおくとき、 y を t の式で表せ。
 - (イ) $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$ のとき、yの最大値、最小値と、そのときのxの値を求めよ。

 $[\beta-2]$ 微分法と積分法] (1), (2)各5点, (3)(ア)3点 (イ) 7点

- (1) $S = \pi r^2$ を r で微分せよ。
- $(2)\quad f(1)\!=\!2$, $f'(1)\!=\!1$, $f'(0)\!=\!-5$ を満たす2次関数 f(x)を求めよ。
- (3) 次の問いに答えよ。
- (ア) 曲線 $y=x^2-2x+4$ のグラフに原点 O から引いた2つの接線の方程式を求めよ。
- (イ) (ア)で求めた2接線と曲線 $y=x^2-2x+4$ によって囲まれた図形の面積を求めよ。

$[\beta-3$ ベクトル] (1), (2)各5点, (3)(ア)3点 (イ) 7点

- (1) $\vec{a} = (-\sqrt{7}, 3)$ に垂直な単位ベクトル \vec{e} を求めよ。
- (2) \overrightarrow{AB} =(x-3, -4), \overrightarrow{AC} =(3, 2)とする。 3 点 A, B, Cが一直線上にあるように実数 xの値を定めよ。
- (3) 四面体OABCにおいて,辺OAを3:1に内分する点をQ,辺BCを2:1に 内分する点をR,線分QRの中点をMとし,直線OMと平面ABCの交点を Pとする。 $\overrightarrow{OA} = \vec{a}$, $\overrightarrow{OB} = \vec{b}$, $\overrightarrow{OC} = \vec{c}$ とするとき,次の問いに答えよ。 (ア) \overrightarrow{OM} を \vec{a} , \vec{b} , \vec{c} を用いて表せ。 (イ) \overrightarrow{OP} を \vec{a} . \vec{b} . \vec{c} を用いて表せ。

$[\beta-4$ 数列] (1), (2)各5点, (3)(ア)3点 (イ) 7点

- (1) 第3項が12, 第5項が48である等比数列 $\{a_n\}$ の一般項を求めよ。
- (2) $\sum_{k=1}^{n} k(3k+1)$ を求めよ。
- (3) 数列 $\{a_n\}$ の 初項から第 n 項までの和 S_n が, $S_n = \frac{3}{2}a_n + 4n 7 \, (n=1,\; 2,\; 3,\; \cdots) \,$ を満たすとする。このとき,次の問いに答えよ。
 - (ア) $S_{n+1}=S_n+a_{n+1}$ であることを利用して、 a_{n+1} を a_n を用いて表せ。
 - (イ)数列 $\{a_n\}$ の一般項を求めよ。