

7 11 4 9 11

平成20年11月12日実施

神奈川県高等学校教科研究会数学部会編

数学学力テスト

(時間50分)

(無断転載を禁じます)

注 意 事 項

- 1. 開始の合図があるまで、この問題冊子を開いてはいけません。
- 2. 解答用紙はこの冊子にはさんであります。
- 3. 計算はあいているところを使い、答えはすべて解答用紙の決められた欄に書き入れなさい。
- 4. 選択問題については, $[\beta-1]$ から $[\beta-9]$ までの9群のうちから,学校で指定された 2 群を解答しなさい。その際,解答する群の番号を に記入しなさい。

- 解答上の注意事項 ―

- 答えに根号が含まれるときは、根号の中は最も小さい自然数にしなさい。
- ・分母に根号が含まれるときは、分母に根号を含まない形にしておきなさい。
- 答えが分数になるとき、約分できる場合は約分しておきなさい。

S II β 学 カ テ ス ト

β共通問題

次の問いに答えよ。(ここで使用しているiは虚数単位とする)

- (1) x についての整式 $x^3 + ax 2$ が x + 1 で割り切れるとき, 定数 a の値を求めよ。
- (2) 等式 (3+2i)(a+bi) = 8+i を満たす実数 a, b の値を求めよ。
- (3) 2次方程式 $2x^2-x+3=0$ の 2 つの解を α , β とするとき, 2 数 2α , 2β を解とする x の 2 次方程式を求めよ。ただし、 x^2 の係数は 1 とする。

 $\begin{cases} y \ge \frac{1}{3}x \\ y \le 3x \end{cases}$

- (5) 3点 A(0,-1), B(2,-3), C(4,-1) を通る円の方程式を求めよ。
- (6) 2点 A(-1,4), B(1,2) を結ぶ線分 AB の垂直二等分線の方程式を求めよ。
- (7) 点 (-1, 2) から円 $x^2 + y^2 = 1$ に引いた接線の方程式を求めよ。(途中経過を書け)
- (8) 3次方程式 $x^3 + ax^2 + bx 4 = 0$ の 1 つの解が 1+i であるとき, 次の問いに答えよ。 ただし, a, b は実数とする。(途中経過を書け)
 - (ア) a, b の値を求めよ。
- (イ) 他の解を求めよ。

解答上の注意事項

答えに扱号が含まれるときは、振号の中は最も小さい自然数にしなさい。

分母に根号が含まれるときは、分母に根号を含まない形にしておきなさい。

答えが分数になるとき、約分できる場合は約分しておきなさい。

β選択問題

[β-1] から [β-9] までの 9 群のうち,学校で指定された 2 群を 解答すること。

[β-1] (三角関数)

- (1) $0 \le \theta < 2\pi$ のとき,方程式 $\sin \theta = -\frac{1}{2}$ を解け。
- (2) 関数 $y = \tan 3x$ の周期を求めよ。ただし、弧度法で答えよ。
- (3) α が第 1 象限の角、 β が第 2 象限の角で、 $\sin\alpha=\frac{3}{5}$ 、 $\cos\beta=-\frac{5}{13}$ のとき、 $\sin(\alpha+\beta)$ の値を求めよ。
- (4) sin 22.5°の値を求めよ。

[β-2] 指数関数•対数関数

- (1) $\sqrt{5} \times \sqrt[3]{5^2} \times \sqrt[6]{5^5}$ を計算せよ。
- (2) 2^{100} は何桁の整数か。ただし、 $\log_{10}2=0.3010$ とする。
- (3) 方程式 $9^x 4 \cdot 3^x 45 = 0$ を解け。
- (4) (log₂3+ log₈9)・log₃4を計算せよ。
- (5) 関数 $y = (\log_2 x)^2 6\log_2 x + 16$ $(1 \le x \le 16)$ の最小値を求めよ。また、そのときのxの値を求めよ。

[β-3] 微分・積分の考え

- (1) 曲線 $y = -2x^2 + 3$ 上の点 (2, -5) における接線の方程式を求めよ。
- (2) 定積分 $\int_{-3}^{1} (x^2-2x)dx + \int_{1}^{3} (x^2-2x)dx$ の値を求めよ。
- (3) 2 つの放物線 $y = x^2$, $y = -x^2 + 2$ とで囲まれた図形の面積を求めよ。
- (4) $f(x) = 3x^2 + \int_0^2 f(t)dt$ を満たす関数 f(x) を求めよ。
- (5) x についての方程式 $x^3 3ax^2 + 4 = 0$ が異なる 2 個の実数解をもつとき、定数 a の値を求めよ。ただし、a > 0 とする。

$[\beta-4]$ 式と証明・高次方程式 (この選択群で使用しているiは虚数単位とする)

- (1) (1-2i)³を計算せよ。
- (2) $\frac{b}{a^2-ab}-\frac{a}{ab-b^2}$ を計算せよ。
- (3) 3次方程式 $x^3+4x^2+6x+3=0$ を解け。
- (4) x^4 を x^2-4x+3 で割ったときの余りを求めよ。
- (5) 等式 (2k+3)x+(3k-2)y+4k-7=0 がどんな k の値に対しても成り立つように x, y の値を定めよ。

- (1) 2点 A(-2,1), B(6,-3) を結ぶ線分 AB を 5:3 の比に外分する点の座標を 求めよ。
- (2) 点 (2,0) と直線 y=x+1 の距離を求めよ。
- (3) 方程式 $x^2 + y^2 2x 4y + k = 0$ が円を表すような定数 k の値の範囲を求めよ。
- (4) 3点(1,-1), (-1,1), (x,y) を頂点にもつ正三角形がある。このとき、x,y の値を求めよ。
- (5) 円 $(x-1)^2+(y-2)^2=25$ 上の点 (-2,6) における接線の方程式を求めよ。

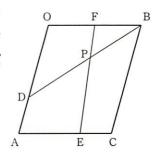
[β−6] (三角関数) (加法定理は除く)

- (1) $\cos\frac{11}{3}\pi$ の値を求めよ。 東京軍の政治はの下、書きの規模的のでは \sin \sin \sin
- (2) θ が第 2 象限の角で $\cos\theta = -\frac{1}{3}$ のとき, $\tan\theta$ の値を求めよ。
 - (3) $0 \le \theta < 2\pi$ のとき、方程式 $2\sin^2\theta + \cos\theta = 1$ を解け。
 - (4) 関数 $y = \cos\left(2x + \frac{\pi}{3}\right)$ のグラフは, $y = \cos 2x$ のグラフを x 軸方向に α だけ平行 移動したものである。このとき α の値を求めよ。ただし, $-\frac{\pi}{2} \le \alpha \le \frac{\pi}{2}$ とする。
 - (5) 関数 $y = \cos^2 \theta + 2 \sin \theta + 1$ の最大値を求めよ。

[β-7] 指数関数・対数関数 (対数関数は除く)

- - (2) $\left(9^{\frac{1}{4}} + 4^{\frac{1}{4}}\right) \left(9^{\frac{1}{4}} 4^{\frac{1}{4}}\right)$ を計算せよ。
 - (3) 次の3つの数の大小を調べ、小さい順に左から並べよ。

$$\left(\sqrt{2}\right)^{-1}$$
, $\frac{1}{\sqrt[3]{8^{-2}}}$, 1


- (4) 不等式 $27 \cdot \left(\frac{2}{3}\right)^x 8 \le 0$ を解け。
- (5) $2^x + 2^{-x} = 5$ のとき、 $8^x + 8^{-x}$ の値を求めよ。

[β-8] 数列

- (2) 第2項が3,初項から第3項までの和が-7である等比数列の初項と公比を求めよ。
- (3) $\sum_{k=11}^{20} k^2$ を求めよ。
- (4) 1, 4, 13, 40, 121, … で表される数列 $\{a_n\}$ の一般項を求めよ。
- (5) $a_1=1$, $a_{n+1}=2a_n+1$ $(n=1,2,3,\cdots)$ で定義される数列 $\{a_n\}$ の一般項を求めよ。

[β-9] ベクトル

- (1) 2つのベクトル $\vec{a} = (-2, 3)$, $\vec{b} = (x+1, 6)$ が垂直になるように、定数 x の値を定めよ。
- (2) $|\vec{a}|=1$, $|\vec{b}|=\sqrt{3}$, $\vec{a}\cdot\vec{b}=-\frac{3}{2}$ のとき, $|\vec{a}-\vec{b}|$ の値を求めよ。
- (3) 点 A(1, 2, 3) に関して, 点 P(-4, 7, 8) と対称な点 Q の座標を求めよ。
- (4) 2 点 A(1,3,4), B(3,1,2) に対して, $\overrightarrow{OP} = \overrightarrow{OA} + t\overrightarrow{AB}$ を満たす点 P が xy 平面上にあるとき, 点 P の座標を求めよ。
- (5) 右図の平行四辺形 OACB において、辺 OA, AC を 2:1 に内分する点をそれぞれ D, E, 辺 OB の中点を F とし、BD と EF の交点を P とする。 $\overrightarrow{OA} = \overrightarrow{a}$ 、 $\overrightarrow{OB} = \overrightarrow{b}$ とするとき、 \overrightarrow{OP} を \overrightarrow{a} , \overrightarrow{b} を用いて表せ。

