

平成20年11月12日実施

神奈川県高等学校教科研究会数学部会編

数学学カテスト

(時間50分)

(無断転載を禁じます)

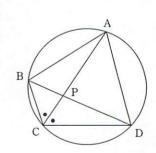
中四面体の4つの面を赤、背、黄、緑	フリガナ	が代の	\$38	異なる	ED Fil	1 E (4)
h Shro	氏 名	番	組	学年	第	
		-01-0			8 4	1 6

注 意 事 項

- 1. 開始の合図があるまで、この問題冊子を開いてはいけません。
- 2. 解答用紙はこの冊子にはさんであります。 かり かんしゅう あっ りょうしゅう
- 3. 計算はあいているところを使い、答えはすべて解答用紙の決められた欄に書き入れなさい。
- 4. 選択問題については, $\begin{bmatrix} \alpha-1 \end{bmatrix}$, $\begin{bmatrix} \alpha-2 \end{bmatrix}$ の 2 群のうちから,学校で指定された 1 群を解答しなさい。その際,解答する群の番号を \bigcirc に記入しなさい。

線 AC, BD の交点を P とする。対角線 AC は _BCD さ

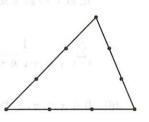
走的床


S II α 学 カ テ ス ト

α共通問題

次の問いに答えよ。

- (1) $x = \sqrt{5} + \sqrt{3}$, $y = \sqrt{5} \sqrt{3}$ のとき, $x^2y + xy^2$ の値を求めよ。
- (2) $(b+c)a^2+(a-c)b^2-(a+b)c^2$ を因数分解せよ。
- (3) 放物線 $y = 2x^2 + 8x 3a$ の頂点が直線 y = 3x 1 上にあるとき, 定数 a の値を求めよ。
- (4) 2次不等式 $ax^2+x+b>0$ の解が x<-2, 1< x であるとき, 定数 a, b の値を求めよ。
- (5) \triangle ABC において a=3, b=5, c=7 のとき, \angle C の大きさを求めよ。
- (6) $0^{\circ} \le \theta \le 180^{\circ}$ のとき、方程式 $2\sin^2\theta = 3\cos\theta$ を解け。
- (7) 正四面体の4つの面を赤、青、黄、緑の4色で塗り分けるとき、異なる塗り方は何通りあるか。
- (8) A, B, C の 3 人が検定試験を受ける。A, B, C の合格する確率はそれぞれ $\frac{3}{5}$, $\frac{5}{6}$, $\frac{5}{7}$ である。このとき A, B, C のうち少なくとも 1 人が合格する確率を求めよ。
- (9) 次の に適するものを、下の(P) \sim (x) の中から選び、記号で答えよ。 「a, b は整数とする。a \geq b が偶数であることは、a + b が偶数であるための 。。


 - (イ) 十分条件であるが必要条件ではない
 - (ウ) 必要十分条件である
 - (エ) 必要条件でも十分条件でもない
- (III) 右図のような円に内接する四角形 ABCD において、対角線 AC, BD の交点を P とする。対角線 AC は ∠BCD を二等分し、BC=4、CD=8、CP=2のとき、BDの長さを求めよ。

α選択問題

 $[\alpha - 1]$

- (1) 0 < k < 2 とする。 $x = k^2 4k$ のとき $\sqrt{x+4} + \sqrt{x+8k+4}$ を計算せよ。
- (2) 2つの方程式 $x^2 + ax + 3a = 0$, $x^2 2ax + 2a^2 3 = 0$ がともに実数解をもつとき, 実数 a の値の範囲を求めよ。
- (3) 20! を計算するとその末尾に 0 がいくつ続けて並ぶか答えよ。
 - (4) 三角形の各辺を3等分した6点と3項点を合わせた9点の内から3点をえらんで結ぶとき、三角形ができる確率を求めよ。

- (5) $(2x-3y)^5$ の展開式における x^3y^2 の係数を求めよ。
- (6) 方程式 $|x|+|-x^2+3x|=k$ について、次の問いに答えよ。
- (i) $y = |x| + |-x^2 + 3x|$ のグラフを書け。

(途中経過を書け)

- (ii) 方程式の異なる実数解の個数が4個のとき,定数kのとりうる値の範囲を求めよ。 (途中経過を書け)
- (7) \triangle ABC において a=13, b=4, c=15 とするとき, 次の問いに答えよ。
 - (i) $\cos A$, $\sin A$ を求めよ。

(途中経過を書け)

(ii) △ABC の面積 S を求めよ。

(途中経過を書け)

- (1) 方程式 $\log_2(2-x) = 1 + \log_4(x+3)$ を解け。
- (2) 定積分 $\int_{-1}^{3} |x^2 + x 2| dx$ を計算せよ。 $\frac{1}{2}$ を計算せよ。 $\frac{1}{2}$ を計算せま。 $\frac{1}{2}$ を計算はまた。 $\frac{1$
- (3) $\vec{a} = (-4, 3)$ に垂直な単位ベクトル \vec{e} を求めよ。
- (4) $|\vec{a}| = 2$, $|\vec{b}| = \sqrt{13}$, $|\vec{a} \vec{2b}| = 6$ とする。 $\vec{a} + \vec{b}$ と $\vec{a} + t\vec{b}$ が垂直となるように 定数 t の値を定めよ。
- (5) $\sum_{k=1}^{n} \frac{1}{\sqrt{k} + \sqrt{k+1}}$ を計算せよ。
- (6) $0 \le x < \pi$ とする。関数 $y = -10 \sin^2 x + 6 \sin x \cos x 4 \cos^2 x$ において、次の問いに答えよ。
 - (i) $y = r\sin(2x + \alpha) + k$ の形にせよ。ただし、r > 0、 $-\pi < \alpha < \pi$ とする。

(途中経過を書け)

(ii) 最大値, 最小値を求めよ。また, そのときのxの値を求めよ。

(途中経過を書け)

- (7) 数列 $\{a_n\}$ の初項から第n項までの和 S_n が $S_n = -2a_n + 2$ で表されるとき、次の問いに答えよ。
 - (i) 初項 a₁ を求めよ。

(途中経過を書け)

(ii) 第n項 a_n をnの式で表せ。

(途中経過を書け)