

平成 23 年 4 月 12 日実施

神奈川県高等学校教科研究会数学部会編

数学学力テスト

(時間50分)

(無断転載を禁じます)

第	学年	組	番	氏名	
---	----	---	---	----	--

注意事項 =

- 1. 開始の合図があるまで、この問題冊子を開いてはいけません。
- 2. 解答用紙はこの冊子にはさんであります。
- 3. 計算はあいているところを使い、答えはすべて解答用紙の決められた欄に書き入れなさい。
- 4. 選択問題については、 $[\beta-1]$ から $[\beta-7]$ までの7群のうちから、学校で指定された2群を解答しなさい。

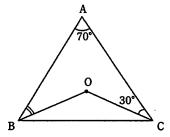
─ 解答上の注意事項 ──

- ・答えに根号が含まれるときは、根号の中は最も小さい自然数にしなさい。
- ・答えが分数になるとき、約分できる場合は約分しておきなさい。

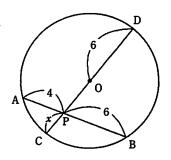
SⅡβ学力テスト

 $oldsymbol{eta}$ 共 通 問 題 次の問いに答えよ。(ここで使用しているiは虚数単位とする)

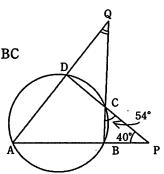
(1)
$$\frac{2}{x^2-1} - \frac{1}{x^2+x}$$
 を計算せよ。

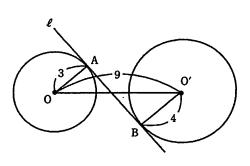

- (2) 等式 (2-i)(x+yi)=4+3i を満たす実数 x, y の値を求めよ。
- (3) 中心がx軸上にあり、2点 $A(0,\sqrt{5})$, B(2,3) を通る円の方程式を求めよ。
- (4) 定積分 $\int_{-4}^{1} (x+4)(x-1)dx$ を求めよ。
- (5) log₂3=a, log₂5=b とするとき, log₂30 を a, b で表せ。
- (6) 連立方程式 $\begin{cases} x+y=1 \\ 3^{2x+y}=27 \end{cases}$ を解け。
- (7) $\alpha+\beta=\frac{\pi}{4}$ のとき、 $(\tan\alpha+1)(\tan\beta+1)$ の値を求めよ。
- (8) 連立不等式 $\begin{cases} y \ge -x+2 \\ x^2+y^2 \le 4 \end{cases}$ の表す領域の面積を求めよ。
- (9) 関数 $y=\sin x+\cos x+\sin 2x$ について、次の問いに答えよ。
 - (r) $\sin x + \cos x = t$ とおいて、yをtで表せ。
 - (イ) $0 \le x < 2\pi$ のとき、関数yのとりうる値の範囲を求めよ。(途中経過を書け)
- (10) 曲線 $y=x^3-9x^2+15x-7$ について、次の問いに答えよ。
 - (r) 曲線上の点Pのx座標をtとするとき、点Pにおける接線の方程式をtを用いて表せ。
 - (イ) 点 Q(0, k) から曲線に異なる 3 本の接線が引けるとき、定数 k の値の範囲を求めよ。(途中経過を書け)

β 選択問題


 $[\beta-1]$ から $[\beta-7]$ までの 7 群のうち、学校で指定された 2 群を解答すること。

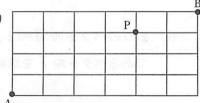
[β-1] (平面図形


(1) 右図において、点 O は △ABC の外心である。∠ACO=30°, ∠BAC=70° のとき、∠ABO の大きさを求めよ。


(2) 右図のように半径 6 の円 O がある。AP=4, BP=6 であるとき、CP の長さを求めよ。

(3) 右図のように円に内接する四角形 ABCD があり、 直線 AB と直線 DC の交点を P、直線 AD と直線 BC の交点を Q とする。∠BCP=54°、∠BPC=40° とするとき、∠AQB の大きさを求めよ。

(4) 右図において、直線ℓは2つの円0,0′の共通接線で、点A,Bは接点である。OO′=9,OA=3,O′B=4のとき、線分ABの長さを求めよ。



[β-2] (集合と論理

- (1) 全体集合を $U=\{x\mid x\ \text{ti }10$ 以上 20 以下の自然数 $\}$ とし、その部分集合を $A=\{x\mid x\ \text{ti }2\ \text{の倍数}\}$, $B=\{x\mid x\ \text{ti }3\ \text{の倍数}\}$ とするとき, 集合 $\overline{A}\cap \overline{B}$ を要素を書き並べる方法で表せ。
- (2) 1 から 100 までの整数の集合を全体集合 U とする。U の部分集合を $A = \{x \mid x \text{ は奇数}\}$, $B = \{x \mid x \text{ は 5 の倍数}\}$ とするとき, 集合 $A \cup B$ の要素の個数を求めよ。
- (3) 次の に適するものを、下の(r)~(x)の中から選び、記号で答えよ。 「整数 x , y について、x+y が 3 の倍数であることは、x , y がともに 3 の倍数 であるための 。」
 - (ア) 必要条件であるが十分条件ではない
 - (イ) 十分条件であるが必要条件ではない
 - (ウ) 必要十分条件である
 - (エ) 必要条件でも十分条件でもない
- (4) x, y が実数のとき、次の命題の対偶を述べよ。また、その対偶の真偽を答えよ。 $\lceil x+y>4$ ならば x>2 または y>2 である。」

[β-3] 場合の数と確率

(1) 右図のような道がある。A 地点から P 地点を通り B 地点まで行く最短の経路は何通りあるか。

- (2) 男子3人,女子3人が1列に並ぶとき,男女が交互になる並び方は何通りあるか。
- (3) 赤球2個と白球3個が入っている袋から球を1個取り出し、その色を見てから袋に 戻すという試行を3回繰り返す。このとき赤球を1回、白球を2回取り出す確率を 求めよ。
- (4) 1組52枚のトランプから2枚のカードを同時に引くとき、少なくとも1枚はハートである確率を求めよ。

[β-4] 数列

- (1) 初項 $\frac{3}{2}$, 公差 $\frac{1}{2}$ の等差数列の一般項 a_n を求めよ。
- (2) 公比を正とする等比数列 $\{a_n\}$ がある。 $a_3=20$, $a_5=80$ であるとき,この数列の一般項を求めよ。
- (3) 数列 $1 \cdot 2$, $2 \cdot 3$, $3 \cdot 4$, ……, n(n+1) の初項から第 n 項までの和 S_n を求めよ。
- (4) $a_1=3$, $a_{n+1}=-3a_n+8$ (n=1, 2, 3, ……) で定義された数列 { a_n } の一般項を求めよ。

[β-5] (ペカドル)

- (1) $|\vec{a}|=2$, $|\vec{b}|=\sqrt{3}$, $|\vec{a}-\vec{b}|=1$ のとき, \vec{a} と \vec{b} の内積 $\vec{a}\cdot\vec{b}$ を求めよ。
- (2) \vec{a} =(1, -2), \vec{b} =(4, 6), \vec{c} =(4, -1) のとき, 2 つのベクトル \vec{a} + $t\vec{b}$ と \vec{c} が平行 になるように、定数 t の値を定めよ。
- (3) 中心の座標が(3,1,5)で、yz平面に接する球面の方程式を求めよ。
- (4) 2 つのベクトル \overrightarrow{a} = (2, -1, 3), \overrightarrow{b} = (1, 1, 0) の両方に垂直で、大きさが $2\sqrt{3}$ であるベクトル \overrightarrow{c} を求めよ。

[β-6] 数学Ⅱ①

- (1) log₂5·log₂₅8 を計算せよ。
- (2) 整式 x^3-3x-2 を因数分解せよ。
- (3) 曲線 $y=-x^2-3x$ について、傾きが1 である接線の方程式を求めよ。
- (4) 円 $x^2+y^2=7$ と直線 3x+4y-10=0 の 2 つの交点を結ぶ線分の長さを求めよ。

[β-7] **(数学Ⅱ②**

- (1) 2 次方程式 $3x^2-6x+1=0$ の 2 つの解を α , β とするとき, $(\alpha-2)(\beta-2)$ の値を求めよ。
- (2) 不等式 $\left(\frac{1}{2}\right)^{x-1} > 4$ を解け。
- (3) 等式 $\int_a^x f(t)dt = x^2 + 2x 3$ を満たす関数 f(x) と、定数 a の値を求めよ。
- (4) 関数 $f(x)=x^3+ax^2+bx+c$ は x=1 で極大値 2 をとり、x=3 で極小値をとる。 定数 a, b, c の値を求めよ。